240 research outputs found

    Potential of Deep Operator Networks in Digital Twin-enabling Technology for Nuclear System

    Full text link
    This research introduces the Deep Operator Network (DeepONet) as a robust surrogate modeling method within the context of digital twin (DT) systems for nuclear engineering. With the increasing importance of nuclear energy as a carbon-neutral solution, adopting DT technology has become crucial to enhancing operational efficiencies, safety, and predictive capabilities in nuclear engineering applications. DeepONet exhibits remarkable prediction accuracy, outperforming traditional ML methods. Through extensive benchmarking and evaluation, this study showcases the scalability and computational efficiency of DeepONet in solving a challenging particle transport problem. By taking functions as input data and constructing the operator GG from training data, DeepONet can handle diverse and complex scenarios effectively. However, the application of DeepONet also reveals challenges related to optimal sensor placement and model evaluation, critical aspects of real-world implementation. Addressing these challenges will further enhance the method's practicality and reliability. Overall, DeepONet presents a promising and transformative tool for nuclear engineering research and applications. Its accurate prediction and computational efficiency capabilities can revolutionize DT systems, advancing nuclear engineering research. This study marks an important step towards harnessing the power of surrogate modeling techniques in critical engineering domains

    Essential Traits for the Economics of Network and ICT: Theory and Practice

    Get PDF
    【学位授与の要件】中央大学学位規則第4条第1項【論文審査委員主査】谷口 洋志 (中央大学経済学部教授)【論文審査委員副査】塩見 英治 (中央大学経済学部教授), 鳥居 昭夫 (中央大学経済学部教授), 井手 秀樹 (慶応義塾大学商学部教授)博士(経済学)中央大

    Data-driven multi-scale modeling and robust optimization of composite structure with uncertainty quantification

    Full text link
    It is important to accurately model materials' properties at lower length scales (micro-level) while translating the effects to the components and/or system level (macro-level) can significantly reduce the amount of experimentation required to develop new technologies. Robustness analysis of fuel and structural performance for harsh environments (such as power uprated reactor systems or aerospace applications) using machine learning-based multi-scale modeling and robust optimization under uncertainties are required. The fiber and matrix material characteristics are potential sources of uncertainty at the microscale. The stacking sequence (angles of stacking and thickness of layers) of composite layers causes meso-scale uncertainties. It is also possible for macro-scale uncertainties to arise from system properties, like the load or the initial conditions. This chapter demonstrates advanced data-driven methods and outlines the specific capability that must be developed/added for the multi-scale modeling of advanced composite materials. This chapter proposes a multi-scale modeling method for composite structures based on a finite element method (FEM) simulation driven by surrogate models/emulators based on microstructurally informed meso-scale materials models to study the impact of operational parameters/uncertainties using machine learning approaches. To ensure optimal composite materials, composite properties are optimized with respect to initial materials volume fraction using data-driven numerical algorithms

    Surrogate Modeling-Driven Physics-Informed Multi-fidelity Kriging: Path Forward to Digital Twin Enabling Simulation for Accident Tolerant Fuel

    Full text link
    The Gaussian Process (GP)-based surrogate model has the inherent capability of capturing the anomaly arising from limited data, lack of data, missing data, and data inconsistencies (noisy/erroneous data) present in the modeling and simulation component of the digital twin framework, specifically for the accident tolerant fuel (ATF) concepts. However, GP will not be very accurate when we have limited high-fidelity (experimental) data. In addition, it is challenging to apply higher dimensional functions (>20-dimensional function) to approximate predictions with the GP. Furthermore, noisy data or data containing erroneous observations and outliers are major challenges for advanced ATF concepts. Also, the governing differential equation is empirical for longer-term ATF candidates, and data availability is an issue. Physics-informed multi-fidelity Kriging (MFK) can be useful for identifying and predicting the required material properties. MFK is particularly useful with low-fidelity physics (approximating physics) and limited high-fidelity data - which is the case for ATF candidates since there is limited data availability. This chapter explores the method and presents its application to experimental thermal conductivity measurement data for ATF. The MFK method showed its significance for a small number of data that could not be modeled by the conventional Kriging method. Mathematical models constructed with this method can be easily connected to later-stage analysis such as uncertainty quantification and sensitivity analysis and are expected to be applied to fundamental research and a wide range of product development fields. The overarching objective of this chapter is to show the capability of MFK surrogates that can be embedded in a digital twin system for ATF

    A network biology approach evaluating the anticancer effects of bortezomib identifies SPARC as a therapeutic target in adult T-cell leukemia cells

    Get PDF
    There is a need to identify the regulatory gene interaction of anticancer drugs on target cancer cells. Whole genome expression profiling offers promise in this regard, but can be complicated by the challenge of identifying the genes affected by hundreds to thousands of genes that induce changes in expression. A proteasome inhibitor, bortezomib, could be a potential therapeutic agent in treating adult T-cell leukemia (ATL) patients, however, the underlying mechanism by which bortezomib induces cell death in ATL cells via gene regulatory network has not been fully elucidated. Here we show that a Bayesian statistical framework by VoyaGene® identified a secreted protein acidic and rich in cysteine (SPARC) gene, a tumor-invasiveness related gene, as a possible modulator of bortezomib-induced cell death in ATL cells. Functional analysis using RNAi experiments revealed that inhibition of the expression SPARC by siRNA enhanced the apoptotic effect of bortezomib on ATL cells in accordance with an increase of cleaved caspase 3. Targeting SPARC may help to treat ATL patients in combination with bortezomib. This work shows that a network biology approach can be used advantageously to identify the genetic interaction related to anticancer effects
    corecore